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Abstract: Objective: This study aims to explore early diagnostic methods for breast cancer, enhancing diagnostic sensitivity 

and specificity. Methods: A retrospective analysis was conducted, collecting data from 176 patients with breast mass treated at 

our institution. This cohort included 73 breast cancer patients and 103 patients with breast mass. Levels of four biomarkers - 

Ferritin (FER), Carcinoembryonic Antigen (CEA), Cancer Antigen 153 (CA153), and Cytokeratin 19 Fragment (CY211) - were 

measured. A clinical prediction model was constructed using multivariate Logistic regression, and its performance was evaluated 

through the Concordance Index (C-index), Receiver Operating Characteristic (ROC) curves, and calibration curves. Additionally, 

machine learning algorithms (K-Nearest Neighbors and Random Forest) were employed for validation, assessing the model's 

predictive capability through ROC curves, Precision−Recall Curves, True Negative Rate (TNR), True Positive Rate (TPR), 

F-measure, and 5-fold cross-validation. Results: Levels of FER, CEA, CA153, and CY211 in the breast cancer group were 

significantly higher than those in the breast mass group. The constructed prediction model demonstrated high predictive 

capability, with a C-index of 0.813 and an area under the ROC curve of 0.812. Clinical decision curve analysis indicated maximal 

net clinical benefit with a threshold probability range of 0.1 to 0.95, without compromising other patients' benefits. Machine 

learning validation confirmed the model's high accuracy and reliability. Conclusion: The clinical prediction model, utilizing a 

combination of FER, CEA, CA153, and CY211, effectively differentiates between benign breast mass and breast cancer, offering 

a novel perspective for early diagnosis. 
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1. Introduction 

Breast cancer is one of the most common cancers among 

women worldwide and a leading cause of cancer-related deaths 

among females [1], with incidence and mortality rates varying 

significantly across different regions [2]. Advances in screening 

techniques and treatment methods have improved early diagnosis 

and treatment outcomes for breast cancer in recent years. However, 

the complexity and heterogeneity of breast cancer necessitate more 

precise diagnostic methods to guide treatment decisions. 

Currently, breast cancer diagnosis primarily relies on 

imaging studies, clinical examination, and histopathological 

assessment. The application of biomarkers in recent years has 

provided new possibilities for early diagnosis and treatment of 

breast cancer [3-5]. Biomarkers, reflecting the biological 

characteristics of tumors, are crucial for prognosis assessment 

and treatment decision-making. 

Ferritin (FER), Carcinoembryonic Antigen (CEA), Cancer 

Antigen 153 (CA153), and Cytokeratin 19 Fragment (CY211) 

are commonly used biomarkers in breast cancer diagnostics. 

Ferritin, a protein involved in iron storage and regulation, is 

associated with tumor development in certain cancers. CEA, 

widely used in tumor marker detection, especially in colorectal 

cancer, and CA153, commonly found in the serum of breast 

cancer patients, are closely related to disease recurrence and 

prognosis. CY211, a cytokeratin fragment, is associated with 

tumor aggressiveness and prognosis in breast cancer tissues. 

Utilizing these biomarkers for combined diagnostic 

purposes could enhance the sensitivity and specificity of 

detecting breast cancer in patients with breast mass, providing 

more precise diagnostic information for clinical use. This 
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study collected FER, CEA, CA153, and CY211 data from 

patients with breast tumors treated at our hospital to construct 

a clinical prediction model, aiming to identify breast cancer in 

patients with breast tumors at an early stage, thereby 

facilitating early treatment and improving prognosis. 

2. Materials and Methods 

2.1. General Information 

This retrospective study was approved by the hospital's ethics 

committee. Inclusion criteria: Patients with breast mass requiring 

further examination to clarify the nature of the tumor. Exclusion 

criteria: (1) Patients with other tumors or inflammatory diseases; (2) 

Pregnant or lactating women; (3) Patients with incomplete data. 

From January 2018 to June 2023, 176 patients diagnosed 

with breast mass at our hospital were included in the study. 

Among them, 73 were diagnosed with breast cancer through 

histopathology, and 103 with benign breast mass. The age 

range in the breast cancer group was 32 to 85 years, with an 

average age of 51.31 ± 11.34 years; the benign breast mass 

group ranged from 18 to 71 years, with an average age of 

39.20 ± 11.43 years. There was no statistical significance in 

age between the two groups (P>0.05). 

2.2. Tumor Markers 

Data for Ferritin (FER), Carcinoembryonic antigen (CEA), 

Cancer antigens 153 (CA153), and Cytokeratin 19 fragment 

antigen 21-1 (CY211) were collected from 176 breast mass 

patients. Reference values for FER were 4.63−204 ng/ml, for CEA 

0−5 ng/ml, for CA153 0−31.3 U/ml, and for CY211 0−3.3 ng/ml. 

2.3. Construction of Prediction Model 

A predictive model was established using multivariate 

Logistic regression with the four tumor markers, visualized 

with nomograms. The predictive ability of the nomograms 

was differentiated using the C-index; the performance of the 

prediction model was evaluated by plotting ROC and 

calibration curves; clinical decision curves were plotted to 

assess the net benefit at different threshold probabilities to 

determine the clinical utility of the prediction model. 

2.4. Machine Learning Validation Model 

The model constructed in step 1.3 was validated using 

k-Nearest Neighbor (KNN) and Random Forest (RF) 

algorithms. The hyperparameter tuning was set to a random 

grid of 20. The model's predictive capacity was assessed 

through ROC (Receiver Operating Characteristic Curve), PR 

(Precision−Recall Curves), TNR, TPR, F-value, and 5-fold 

cross-validation. SHAP was used to evaluate the importance 

of each variable in the predictive model. 

2.5. Statistical Methods 

Data analysis was performed using SPSS 20.0 software. 

Data were presented as mean ± standard deviation. The t-test 

was used for comparisons between two groups, with P<0.05 

considered statistically significant. 

3. Results 

3.1. Comparison of FER, CEA, CA153, CY211 Levels 

Between Benign Breast Mass Group and Breast Cancer 

Group 

Results showed that the levels of FER, CEA, CA153, and 

CY211 were significantly higher in the breast cancer group 

compared to the breast mass group, with statistical 

significance (Table 1). 

Table 1. Comparison of Tumor Markers Between Groups. 

Group FER CEA CA153 CY211 

Breast mass Group 92.96±56.29 2.48±1.27 13.45±7.47 1.62±0.86 

Breast Cancer Group 236.44±184.48 7.49±6.06 24.96±15.53 3.39±2.48 

t -7.43 -8.14 -6.54 -6.71 

P <0.01 <0.01 <0.01 <0.01 

 

Figure 1. Clinical Prediction Model Nomogram. 
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3.2. Clinical Prediction Model 

The four predictors were incorporated into a clinical 

prediction model using multivariable logistic regression, 

visualized through nomograms (Figure 1). The C-index of the 

model was 0.813. The ROC curve showed an area under the 

curve (AUC) of 0.812 (Figure 2A), and the calibration curve 

demonstrated good consistency (Figure 2B). The clinical 

decision curve indicated the highest net benefit at threshold 

probabilities ranging from 0.1 to 0.95 without compromising 

other patients' benefits (Figure 3). 

 

Figure 2. Predictive Model ROC Curve and Calibration Curve (A: ROC Curve. B: Calibration Curve). 

 

Figure 3. Clinical Decision Curve. 

3.3. Machine Learning Validation Model 

Results from KNN and RF showed that the area under the 

ROC curve was 0.9895 and 0.9840, respectively (Figure 4), 

and the area under the PR curve was 0.9877 and 0.9823, 

respectively (Figure 5). SHAP visualization showed that the 

importance of variables in the KNN algorithm was in the order 

of FER, CEA, CA153, CY211. In the RF algorithm, the order 
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was FER, CEA, CY211, CA153 (Figure 6), consistent with 

the clinical prediction model. The confusion matrix showed 

that the KNN prediction model had a TPR of 0.959, TNR of 

0.980, accuracy of 0.72, and F1 value of 0.966; the RF 

prediction model had a TPR of 0.922, TNR of 0.979, accuracy 

of 0.954, and F1 value of 0.947 (Figure 7). 5-fold 

cross-validation showed that the ROC of both KNN and RF 

models was greater than 0.8 (Figure 8). 

 

Figure 4. ROC Curve (A. KNN B. RF). 

 

Figure 5. PR Curve (A. KNN B. RF). 

 

Figure 6. SHAP Visualization (A. KNN B. RF). 
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Figure 7. Confusion Matrix (A. KNN B. RF). 

 

Figure 8. 5-Fold Cross-Validation (A. KNN B. RF). 

4. Discussion 

Currently, the diagnosis of breast masses primarily relies on 

radiological imaging and histopathological examination. 

Although mammography and breast ultrasound are standard 

screening tools, they have limitations in early detection of 

breast cancer in women with dense breast tissue. Moreover, 

histopathological examination, while accurate, is invasive and 

can cause discomfort and risk to patients. Therefore, 

developing non-invasive methods with high sensitivity and 

specificity for early diagnosis is a critical direction in breast 

cancer research [6]. 

In recent years, machine learning has made significant 

advances in medical diagnostics, particularly in identifying 

and classifying breast masses. Machine learning algorithms 

can learn features from vast amounts of medical imaging and 

biomarker data, aiding in more precise diagnoses. In medical 

imaging, deep learning techniques have been widely applied 

to the automatic analysis of mammographic images, 

enhancing the detection rate of breast cancer. For instance, 

analyzing breast ultrasound images with convolutional neural 

networks (CNN) effectively differentiates between benign and 

malignant breast masses [7]. Additionally, MRI and PET scan 

image analysis have benefited from machine learning 

technology, increasing the diagnostic accuracy for breast 

cancer [8]. In the realm of biomarkers, machine learning plays 

a vital role in early detection and prognostic assessment of 

breast cancer. Analyzing the gene expression patterns of 

tumor tissues helps physicians select more appropriate 

treatment plans [9]. 

In our study, we developed a clinical prediction model 

incorporating four biomarkers: CEA, Ferritin, CA153, and 

CY211. The model's predictive capacity was evaluated using 

the C-index, ROC curves, calibration curves, and clinical 

decision curves. These evaluations demonstrated that the 

model possesses a high predictive ability, offering significant 

benefits to patients. Machine learning outcomes, including 

TNR, TPR, F-measure, and 5-fold cross-validation, indicated 

the model's efficacy in identifying patients with malignant 

breast tumors. These biomarkers play a significant role in the 

development of breast cancer. CEA, a widely used tumor 

marker glycoprotein, is closely associated with the 

invasiveness and prognosis of breast cancer in patients [10]. 

Another study also pointed out that CEA is one of the most 

valuable serum markers in breast cancer patients [11]. 

Elevated levels of Ferritin are related to the onset of breast 

cancer, with abnormal increases observed in breast cancer 

patients [12]. Studies have also found that increased levels of 

Ferritin in the blood and tumor tissues of breast cancer patients 
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are associated with poor prognosis and advanced histological 

grades [13]. CA153 is a specific marker for breast cancer, 

commonly used to monitor treatment effects and recurrence. 

Elevated levels of CA153 are typically associated with the 

presence and progression of breast cancer [14]. Notably, 

Wojtacki et al. demonstrated that in patients with metastatic 

breast cancer (MBC), an increase in CA15-3 levels of more 

than 30 u/mL could predict recurrence diagnosis 9 months in 

advance [15]. Tampellini et al. conducted a prospective trial 

on 526 MBC patients treated with anthracycline-based 

chemotherapy. They found a gradual shortening of median 

progression-free time from patients with normal CA15-3 

levels (15.3 months) to those whose levels initially increased 

but decreased by 25% (11.7 months), to those with continually 

increasing levels (9.6 months), and finally to those with 

consistently high levels (8.6 months) [16]. It has been 

well-established that breast cancer cells express fragments of 

cytokeratin-19, one of the various cytokeratins that constitute 

the cell skeleton intermediate filaments. CY211, a tumor 

marker, can be detected using anti-CYFRA 21-1 antibodies 

for the serum fragments of cytokeratin-19. CY211 is a useful 

biomarker for detecting disease recurrence and assessing the 

treatment effect of breast cancer [17]. Another study showed 

that CY211 levels significantly decreased after two months of 

treatment with afatinib [18]. Our study demonstrates that the 

combined use of these biomarkers in early diagnosis of breast 

cancer shows high accuracy, indicating the combination's 

effectiveness in differentiating between benign breast masses 

and breast cancer patients. The advantage of a 

multi-biomarker combined diagnosis lies in providing more 

comprehensive tumor biological information, thus enhancing 

the sensitivity and specificity of the diagnosis. Additionally, 

the combination of multiple biomarkers can also aid in 

formulating personalized treatment plans, thereby improving 

patient prognosis. 

5. Conclusion 

In this study, a clinical prediction model for breast cancer 

was constructed by integrating multiple tumor biomarkers. 

This model demonstrates a high level of accuracy, offering a 

novel approach for the early diagnosis of breast cancer, and 

holds significance for the early detection and treatment of the 

disease. However, there are some limitations to our research. 

First, the levels of biomarkers are influenced by various 

factors and may exhibit individual variations. Second, our 

model is based on data from a specific population and may not 

be universally applicable. Overall, our research provides a 

fresh perspective on the early diagnosis of breast cancer, yet it 

necessitates further clinical data and in-depth studies for the 

validation and refinement of this model. 
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